
Rev A 2/2000

CS267

An Introduction
to the Message Passing Interface

Bill Saphir

Lawrence Berkeley National Laboratory
NERSC Division

Phone: 510-486-5442 Fax: 510-495-2998
wcs@nersc.gov

2CS267 2/2000 Bill Saphir

Parallel Hardware/Software (review)

Hardware
• Uniform memory access; cache coherent (cc-UMA)

• SMPs
• Non-uniform memory access; cache coherent (cc-NUMA)

• SGI Origin 2000; HP Exemplar
• Non-uniform memory access; not cache coherent (ncc-NUMA)

• MPPs; clusters

Note: locality is good even on ccUMA machines (cache)

Software models
• Single thread of control

• Automatic parallelization (autotasking); requires cc
• Data parallel (HPF); no cc required; NUMA implicit

• Multiple threads of control
• Message passing; no cc required; NUMA explicit
• “Threads”; requires cc

3CS267 2/2000 Bill Saphir

Message passing programs

• Separate processes
• Separate address spaces (distributed memory model)
• Processes execute independently and concurrently
• Processes transfer data cooperatively

Single Program Multiple Data (SPMD)
• All processes are the same program, but act on different data

Multiple Program Multiple Data (MPMD)
• Each process may be a different program.

MPI Supports both of these. Not all computers support MPMD.

4CS267 2/2000 Bill Saphir

Cooperative Data Transfer

Send operation in process 1 is matched by receive operation in process 2:

memory

process 1

����
����
�

����
����
�

����
����
�

data

memory

process 2

����
����
���

����
����
���

����
����
���

����
����
���

send(data) receive(data)

5CS267 2/2000 Bill Saphir

Models related to message passing

Active messages
• Message contains address of handler that processes incoming data
• No receive operations
• Separate bulk transfer mechanism

Remote memory operations (get/put, 1-sided communication)
• Process may directly access memory of another process with get

and put operations
• Other synchronization mechanisms to coordinate access

Common features
• Separate processes
• Separate address spaces (distributed memory model)
• Processes execute independently and concurrently

6CS267 2/2000 Bill Saphir

MPI History

History
• MPI Forum: government, industry and academia. All major players

represented.
• Formal process began November 1992
• Draft presented at Supercomputing 1993
• Final standard (1.0) published May 1994
• Clarifications (1.1) published June1995
• MPI-2 process began April, 1995
• MPI-1.2 finalized July 1997
• MPI-2 finalized July 1997

Current status
• Public domain versions available from ANL/MSU (MPICH), OSC

(LAM)
• Proprietary versions available from all parallel computer vendors

This is why MPI is important.

7CS267 2/2000 Bill Saphir

MPI Overview

MPI covers
• Point-to-point communication (send/receive)
• Collective communication
• Support for library development

MPI design goals
• Portable
• Provides access to fast hardware (user space/zero copy)
• Based on existing practice (MPI-1)

MPI does not cover
• Fault tolerance
• Parallel/distributed operating system

8CS267 2/2000 Bill Saphir

An MPI Application

An MPI application

The elements of the application are:
• 4 processes, numbered zero through three
• Communication paths between them

The set of processes plus the communication channels is called
“MPI_COMM_WORLD”. More on the name later.

0

32

1

9CS267 2/2000 Bill Saphir

“Hello World” — C

#include <mpi.h>
main(int argc, char *argv[])
{

int me, nprocs
MPI_Init(&argc, &argv)
MPI_Comm_size(MPI_COMM_WORLD, &nprocs)
MPI_Comm_rank(MPI_COMM_WORLD, &me)

printf(“Hi from node %d of %d\n”, me, nprocs)

MPI_Finalize()
}

10CS267 2/2000 Bill Saphir

Compiling and Running

Different on every machine.

Compile:
mpicc -o hello hello.c
mpif77 -o hello hello.c

Start four processes (somewhere):

mpirun -np 4 ./hello

11CS267 2/2000 Bill Saphir

“Hello world” output

Run with 4 processes:

Hi from node 2 of 4
Hi from node 1 of 4
Hi from node 3 of 4
Hi from node 0 of 4

Note:
• Order of output is not specified by MPI
• Ability to use stdout is not even guaranteed by MPI!

12CS267 2/2000 Bill Saphir

Point-to-point communication in MPI

memory

process 1

����
����
����

����
����
����

����
����
����

����
����
����data

memory

process 2

����
����
��

����
����
��

����
����
��

MPI_Send(data, ...) MPI_Recv(data, ...)

13CS267 2/2000 Bill Saphir

Point-to-point Example

Process 0 sends array “A” to process 1 which receives it as “B”

1:
#define TAG 123
double A[10];
MPI_Send(A, 10, MPI_DOUBLE, 1, TAG, MPI_COMM_WORLD)

2:
#define TAG 123
double B[10];
MPI_Recv(B, 10, MPI_DOUBLE, 0, TAG,

MPI_COMM_WORLD, &status)

or

MPI_Recv(B, 10, MPI_DOUBLE, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status)

14CS267 2/2000 Bill Saphir

Some Predefined datatypes

C:
MPI_INT
MPI_FLOAT
MPI_DOUBLE
MPI_CHAR
MPI_LONG
MPI_UNSIGNED

Fortran:
MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_CHARACTER
MPI_COMPLEX
MPI_LOGICAL

Language-independent
MPI_BYTE

15CS267 2/2000 Bill Saphir

Source/Destination/Tag

src/dest

dest

• Rank of process message is being sent to (destination)
• Must be a valid rank (0...N-1) in communicator

src

• Rank of process message is being received from (source)
• “Wildcard” MPI_ANY_SOURCE matches any source

tag
• On the sending side, specifies a label for a message
• On the receiving side, must match incoming message
• On receiving side, MPI_ANY_TAG matches any tag

16CS267 2/2000 Bill Saphir

Status argument

In C: MPI_Status is a structure
• status.MPI_TAG is tag of incoming message

(useful if MPI_ANY_TAG was specified)
• status.MPI_SOURCE is source of incoming message

(useful if MPI_ANY_SOURCE was specified)
• How many elements of given datatype were received
MPI_Get_count(IN status, IN datatype, OUT count)

In Fortran: status is an array of integer
integer status(MPI_STATUS_SIZE)
status(MPI_SOURCE)
status(MPI_TAG)

In MPI-2: Will be able to specify MPI_STATUS_IGNORE

17CS267 2/2000 Bill Saphir

Guidelines for using wildcards

Unless there is a good reason to do so, do not use wildcards

Good reasons to use wildcards:

• Receiving messages from several sources into the same buffer but
don’t care about the order (use MPI_ANY_SOURCE)

• Receiving several messages from the same source into the same
buffer, and don’t care about the order (use MPI_ANY_TAG)

18CS267 2/2000 Bill Saphir

Exchanging Data

• Example with two processes: 0 and 1
• General data exchange is very similar

This is wrong! (for MPI)

memory

process 0

����
����
����

����
����
����

����
����
����

����
����
����

memory

process 1

����
����
����

����
����
����

����
����
����

MPI_Send(A, ...) MPI_Send(A, ...)

����
����
���

����
����
���

����
����
���

����
����
���

����
����
���

����
����
���

����
����
���

MPI_Recv(B, ...) MPI_Recv(B, ...)

A

B

A

B

19CS267 2/2000 Bill Saphir

Deadlock

The MPI specification is wishy-washy about deadlock.

• A safe program does not rely on system buffering.

• An unsafe program may rely on buffering but is not as portable.

Ignore this. MPI is all about writing portable programs.

Better:

• A correct program does not rely on buffering

• A program that relies on buffering to avoid deadlock is incorrect.

In other words, it is your fault it your program deadlocks.

20CS267 2/2000 Bill Saphir

Non-blocking operations

Split communication operations into two parts.
• First part initiates the operation. It does not block.
• Second part waits for the operation to complete.

MPI_Request request;

MPI_Recv(buf, count, type, dest, tag, comm, status)
=

MPI_Irecv(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)

MPI_Send(buf, count, type, dest, tag, comm)
=

MPI_Isend(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)

21CS267 2/2000 Bill Saphir

Using non-blocking operations

#define MYTAG 123
#define WORLD MPI_COMM_WORLD
MPI_Request request;
MPI_Status status;

Process 0:
MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &request)
MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD)
MPI_Wait(&request, &status)

Process 1:
MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request)
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD)
MPI_Wait(&request, &status)

• No deadlock
• Data may be transferred concurrently

22CS267 2/2000 Bill Saphir

Using non-blocking operations (II)

Also possible to use nonblocking send:

#define MYTAG 123
#define WORLD MPI_COMM_WORLD
MPI_Request request;
MPI_Status status;
p=1-me; /* calculates partner in 2 process exchange */

Process 0 and 1:
MPI_Isend(A, 100, MPI_DOUBLE, p, MYTAG, WORLD, &request)
MPI_Recv(B, 100, MPI_DOUBLE, p, MYTAG, WORLD, &status)
MPI_Wait(&request, &status)

• No deadlock
• “status” argument to MPI_Wait doesn’t return useful info here.
• Better to use Irecv instead of Isend if only using one.

23CS267 2/2000 Bill Saphir

Overlapping communication and computation

On some computers it may be possible to do useful work while data is
being transferred.

MPI_Request requests[2];
MPI_Status statuses[2];

MPI_Irecv(B, 100, MPI_DOUBLE, p, 0, WORLD, &request[1])
MPI_Isend(A, 100, MPI_DOUBLE, p, 0, WORLD, &request[0])

.... do some useful work here

MPI_Waitall(2, requests, statuses)

• Irecv/Isend initiate communication
• Communication proceeds “behind the scenes” while processor is

doing useful work
• Need both Isend and Irecv for real overlap (not just one)
• Hardware support necessary for true overlap
• This is why “o” in “LogP” is interesting.

24CS267 2/2000 Bill Saphir

Operations on MPI_Request

MPI_Wait(INOUT request, OUT status)
• Waits for operation to complete
• Returns information (if applicable) in status
• Frees request object (and sets to MPI_REQUEST_NULL)

MPI_Test(INOUT request, OUT flag, OUT status)
• Tests to see if operation is complete
• Returns information in status if complete
• Frees request object if complete

MPI_Request_free(INOUT request)
• Frees request object but does not wait for operation to complete

MPI_Waitall(..., INOUT array_of_requests, ...)
MPI_Testall(..., INOUT array_of_requests, ...)
MPI_Waitany/MPI_Testany/MPI_Waitsome/MPI_Testsome

MPI_Cancel cancels or completes a request. Problematic.

25CS267 2/2000 Bill Saphir

Non-blocking communication gotchas

Obvious caveats:

1. You may not modify the buffer between Isend() and the
corresponding Wait(). Results are undefined.

2. You may not look at or modify the buffer between Irecv() and the
corresponding Wait(). Results are undefined.

3. You may not have two pending Irecv()s for the same buffer.

Less obvious gotchas:

4. You may not look at the buffer between Isend() and the
corresponding Wait().

5. You may not have two pending Isend()s for the same buffer.

26CS267 2/2000 Bill Saphir

Why the isend() restrictions?

• Everyone agrees they are user-unfriendly.
• Restrictions give implementations more freedom

Situation:
• Heterogeneous computer
• Byte order is different in process 1 and process 2

Implementation (example):
• Swap bytes in the original buffer
• Send the buffer
• Swap bytes back to original order

Comments:
• Implementation does not have to allocate any additional space.
• No implementations that currently do this (but there was)
• There are other scenarios that have the same restrictions

27CS267 2/2000 Bill Saphir

Semantics vs. Implementation

Distinguish between semantics and implementation of a routine.

Semantics
What you have to know about a routine in order to use it
correctly.

Implementation
Low-level details of how a library routine is constructed in order
to implement a certain semantics.

Ideal world: only semantics important
Real world: implementation may be important for performance

28CS267 2/2000 Bill Saphir

MPI_Send semantics

Most important:
• Buffer may be reused after MPI_Send() returns
• May or may not block until a matching receive is called (non-local)

Others:
• Messages are non-overtaking
• Progress happens
• Fairness not guaranteed

MPI_Send does not require a particular implementation, as long as it
obeys these semantics.

29CS267 2/2000 Bill Saphir

Review of Implementation from Lecture 6

2 protocols

Eager: send data immediately; use pre-allocated or dynamically allocated
remote bufffer space.

• One-way communication (fast)
• Requires buffer management
• Requires buffer copy
• Does not synchronize processes (good)

Rendezvous: send request to send; wait for ready message to send

• Three-way communication (slow)
• No buffer management
• No buffer copy
• Synchronizes processes (bad)

30CS267 2/2000 Bill Saphir

Point-to-point Performance (review)

How do you model and measure point-to-point communication
performance?

data transfer time = f(message size)

Often a linear model is a good approximation

data transfer time = latency + message size / bandwidth

• latency is startup time, independent of message size
• bandwidth is number of bytes per second

• linear is often a good approximation
• piecewise linear is sometimes better
• the latency/bandwidth model helps understand performance

issues

31CS267 2/2000 Bill Saphir

Latency and bandwidth

• for short messages, latency dominates transfer time
• for long messages, the bandwidth term dominates transfer time

What are short and long?

latency term = bandwidth term

when
latency = message_size/bandwidth

Critical message size = latency * bandwidth

Example: 50 us * 50 MB/s = 2500 bytes

• messages longer than 2500 bytes are bandwidth dominated
• messages shorter than 2500 bytes are latency dominated

32CS267 2/2000 Bill Saphir

Effect of buffering on performance

Copying to/from a buffer is like sending a message
copy time = copy latency + message_size / copy bandwidth

For a single-buffered message:

total time = buffer copy time + network transfer time
= copy latency + network latency

+ message_size *
(1/copy bandwidth + 1/network bandwidth)

Copy latency is sometimes trivial compared to effective network latency

1/effective bandwidth = 1/copy_bandwidth +
1/network_bandwidth

Lesson: Buffering hurts bandwidth

33CS267 2/2000 Bill Saphir

Mixing protocols for high performance of MPI_Send

Description
• Eager for short messages
• Rendezvous for long messages
• Switch protocols near latency-bandwidth product

Features
• Low latency for latency-dominated (short) messages
• High bandwidth for bandwidth-dominated (long) messages
• Reasonable memory management (upper limit on size of message

that may be buffered)
• Non-ideal performance for some messages near critical size

34CS267 2/2000 Bill Saphir

Send Modes

Standard
• Send may not complete until matching receive is posted
• MPI_Send, MPI_Isend

Synchronous
• Send does not complete until matching receive is posted
• MPI_Ssend, MPI_Issend

Ready
• Matching receive must already have been posted
• MPI_Rsend, MPI_Irsend

Buffered
• Buffers data in user-supplied buffer
• MPI_Bsend, MPI_Ibsend

35CS267 2/2000 Bill Saphir

Communicators

What is MPI_COMM_WORLD?

A communicator consists of:
• A group of processes

• Numbered 0 ... N-1
• Never changes membership

• A set of private communication channels between them
• Message sent with one communicator cannot be received by

another.
• Implemented using hidden message tags

Why?
• Enables development of safe libraries
• Restricting communication to subgroups is useful

36CS267 2/2000 Bill Saphir

Safe Libraries

User code may interact with library code.
• User code may send message received by library
• Library may send message received by user code

Triggers:
• Wildcard receives
• Non BSP communication

start_communication();
library_call(); /* library communicates internally */
wait();

37CS267 2/2000 Bill Saphir

Communicators

Solution: library uses private communication domain

A communicator includes private virtual communication domain:
• All communication performed w.r.t a communicator
• Source/destination ranks with respect to communicator
• Message sent on one communicator cannot be received on another.

MPI_Send(buffer, len, type, dest, tag, comm)
MPI_Recv(buffer, len, type, source, tag, comm, status)

38CS267 2/2000 Bill Saphir

MPI_COMM_WORLD

MPI_COMM_WORLD is
• A group of all initial MPI processes
• Communication channels between them

MPI_Send(buf, len, type, dest, tag, MPI_COMM_WORLD)

dest is a rank in MPI_COMM_WORLD

0

3

1 2

4 5

MPI_COMM_WORLD

39CS267 2/2000 Bill Saphir

Creating and manipulating communicators

Create a communicator with same group as MPI_COMM_WORLD but
different communication channels:

MPI_Comm mycomm;
MPI_Comm_dup(MPI_COMM_WORLD, &mycomm);

This is a collective routine.
• Must be called on all processes in MPI_COMM_WORLD
• May not complete until all processes have called it

General principle:
All routines for creating and manipulating communicators are
collective.

40CS267 2/2000 Bill Saphir

MPI_COMM_SPLIT

Partition a communicator into several sub-groups

MPI_Comm_split(IN oldcomm, IN color, IN key,
OUT newcomm)

MPI_Comm oldcomm, *newcomm;
int color, key;

color
• Partitions the original communicator
• All processes with the same color get same newcomm

key
• determines rank within new communicator
• higher key means higher rank

41CS267 2/2000 Bill Saphir

Example: rows and columns of matrix

row0

row1

row2

row3

col0 col3col2col1

MPI_COMM_WORLD

0 1 32

4 5 76

8 9 1110

12 13 1514

42CS267 2/2000 Bill Saphir

Example: rows and columns of a matrix (II)

MPI_Comm row, col;
int nnodes, me, len, myrow, mycol;

MPI_Comm_size(MPI_COMM_WORLD, &nnodes);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

/* compute my row/column coordinates */
len = isqrt(nnodes);
myrow = me/len;
mycol = me%len;

/* create row and column communicators */
MPI_Comm_split(MPI_COMM_WORLD, myrow, me, &row);
MPI_Comm_split(MPI_COMM_WORLD, mycol, me, &col);

43CS267 2/2000 Bill Saphir

Intercommunicators

An intercommunicator is:
• Two non-overlapping groups

• local group (includes the local process)
• remote group (does not include the local process)

• Communication channels between processes in one group and
processes in the other group (but not within a group!)

• Note: “local” and “remote” are logical, not necessarily physical

An intercommunicator can be used instead of a regular (intra)
communicator in Point-to-point operations:

• dest or src argument is a rank in the remote group

In MPI-1, intercommunicators are rare
MPI-2 dynamic process management makes use of intercommunicators

44CS267 2/2000 Bill Saphir

Collective Operations

Collective communication is communication among a group of processes:
• Broadcast
• Synchronization (barrier)
• Global operations (reductions)
• Scatter/gather
• Parallel prefix (scan)

����
����
����
���

����
����
����
���

����
����
����
���

45CS267 2/2000 Bill Saphir

Barrier

MPI_Barrier(communicator)

No process leaves the barrier until all processes have entered it.

Model for collective communication:
• All processes in communicator must participate
• Process might not finish until have all have started.

46CS267 2/2000 Bill Saphir

Broadcast

MPI_Bcast(buf, len, type, root, comm)

• Process with rank = root is source of data (in buf)
• Other processes receive data

MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

/* read data from file */
}
MPI_Bcast(data, len, type, 0, MPI_COMM_WORLD);

Note:
• All processes must participate
• MPI has no “multicast” that is matched by a receive

47CS267 2/2000 Bill Saphir

Reduction

Combine elements in input buffer from each process, placing result in
output buffer.

MPI_Reduce(indata, outdata, count, type, op, root, comm)
MPI_Allreduce(indata, outdata, count, type, op, comm)

• Reduce: output appears only in buffer on root
• Allreduce: output appears on all processes

operation types:
• MPI_SUM
• MPI_PROD
• MPI_MAX
• MPI_MIN
• MPI_BAND
• arbitrary user-defined operations on arbitrary user-defined

datatypes

48CS267 2/2000 Bill Saphir

Reduction example: dot product

/* distribute two vectors over all processes such that
processor 0 has elements 0...99
processor 1 has elements 100...199
processor 2 has elements 200...299
etc.

*/

double dotprod(double a[100], double b[100])
{

double gresult = lresult = 0.0;
integer i;
/* compute local dot product */
for (i = 0; i < 100; i++) lresult += a[i]*b[i];
MPI_Allreduce(lresult, gresult, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);
return(gresult);

}

49CS267 2/2000 Bill Saphir

Data movement: all-to-all

All processes send and receive data from all other processes.

MPI_Alltoall(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,
comm)

For a communicator with N processes:
• sendbuf contains N blocks of sendcount elements each
• recvbuf receives N blocks of recvcount elements each
• Each process sends block i of sendbuf to process i
• Each process receives block i of recvbuf from process i

Example: multidimensional FFT (matrix transpose)

50CS267 2/2000 Bill Saphir

Other collective operations

There are many more collective operations provided by MPI:
MPI_Gather/Gatherv/Allgather/Allgatherv

• each process contributes local data that is gathered into a larger
array

MPI_Scatter/Scatterv
• subparts of a single large array are distributed to processes

MPI_Reduce_scatter
• same as Reduce + Scatter

Scan
• prefix reduction

The “v” versions allow processes to contribute different amounts
of data

51CS267 2/2000 Bill Saphir

Semantics of collective operations

For all collective operations:
• Must be called by all processes in a communicator

Some collective operations also have the “barrier” property:
• Will not return until all processes have started the operation
• MPI_Barrier, MPI_Allreduce, MPI_Alltoall, etc.

Others have the weaker property:
• May not return until all processes have started the operation
• MPI_Bcast, MPI_Reduce, MPI_Comm_dup, etc.

52CS267 2/2000 Bill Saphir

Performance of collective operations

Consider the following implementation if MPI_Bcast:
if (me == root) {

for (i = 0; i < N; i++) {
if (i != me) MPI_Send(buf, ..., dest=i, ...);

}
} else {

MPI_Recv(buf, ..., src=i, ...);
}

Non-scalable: time to execute grows linearly with number of processes.

High-quality implementations of collective operations use algorithms
with better scaling properties if the network supports multiple
simultaneous data transfers.

• Algorithm may depend on size of data
• Algorithm may depend on topology of network

53CS267 2/2000 Bill Saphir

An implementation of MPI_Bcast

0 1

step 1

1 3

0 2

step 2

3 7

2 6

1 5

0 4

step 3

Broadcast to N nodes can
be done in log(N) steps.

54CS267 2/2000 Bill Saphir

Why datatypes?

Motivation for basic datatypes:

• Automatic data conversion on heterogeneous systems
• different sizes
• different formats

• Automatic size calculation on any system
• useful in Fortran (no sizeof)

• More natural
• Specify count, not length in bytes

Heterogeneous?
• Many applications are hype
• Calculation on Cray plus Visualization on SGI is example of a

possibly good reason to support heterogeneity

55CS267 2/2000 Bill Saphir

User-defined datatypes

Applications can define arbitrary composite datatypes
Motivation

• Naturalness
• Row or column of a matrix
• Complex data structure

• New functionality
• Reduction functions on complex data types
• Ability to send different types of data in same message

• Convenience
• Automatic local gather/scatter of data

• Performance
• Possibly

But:
• Can be difficult to understand
• Can hurt performance if not careful
• Not appropriate for dynamic types

56CS267 2/2000 Bill Saphir

User-defined datatypes: Contiguous

New datatype: 5 contiguous integers

MPI_Datatype mp_type;
MPI_Type_contiguous(5, MPI_INT, &mp_type);
MPI_Type_commit(&mp_type);
/* ... use datatype ... */
MPI_Send(buf, 3, mp_type, dest, tag, comm);
/* ... */
MPI_Type_free(&mp_type);

• MPI_TYPE_CONTIGUOUS creates the new datatype
• MPI_TYPE_COMMIT makes it available for use
• New datatype can be used anywhere a basic datatype can be used
• MPI_TYPE_FREE deallocates storage

57CS267 2/2000 Bill Saphir

Contiguous datatype example

typedef struct {
int a[5];

} multi_precision_real;

multi_precision_real x[100], y[100];
MPI_Datatype mp_type;
MPI_Op MP_ADD
void mp_add(void *a, void *b, MPI_Datatype type);
...
MPI_Op_create(mp_add, 1, &MP_ADD);
MPI_Type_contiguous(5, MPI_INT, &mp_type);
MPI_Type_commit(&mp_type);
...
MPI_Reduce(x, y, 100, mp_type, MP_ADD, 0, comm);

58CS267 2/2000 Bill Saphir

Vector datatypes

Common situation: column of a matrix (C) or row of a matrix (Fortran)
Strided data

Matrix

Layout in memory

59CS267 2/2000 Bill Saphir

Other type constructors

Vector, Hvector
• Strided arrays, stride specified in elements or bytes

Struct
• Arbitrary data at arbitrary displacements

Indexed
• Like vector but displacements, blocks may be different lengths
• Like struct, but single type and displacements in elements

Hindexed
• Like Indexed, but displacements in bytes

Other:
• Absolute addresses possible using MPI_Address and
MPI_BOTTOM.

• “holes” in top, bottom or middle of datatypes possible.

60CS267 2/2000 Bill Saphir

When to use user-defined datatypes

What’s the catch?

Complex datatypes can kill performance

• Most implementations pack data into a contiguous buffer and send
• Implementation packing is much slower than user packing
• Hidden holes in apparently contiguous datatype can dramatically

reduce performance

61CS267 2/2000 Bill Saphir

Datatype recommendation

For contiguous data: use datatypes.

For non-contiguous data:

• Structure code so that there is a clean interface to communication
• Write two versions of the communication module

• quick and dirty
• “the MPI Way”

Quick and dirty means:
• Pack the data into your own buffer
• Send as a contiguous MPI datatype

Really quick and dirty (not recommended):
• Use use MPI_BYTE for everything
• Only use if alignment prevents tight packing

62CS267 2/2000 Bill Saphir

MPI_PACKED

PVM style: pack+send ... receive+unpack

int bigbuf[1000];
int a, b, pos;
double c;
position = 0;
MPI_Pack(&a, 1, MPI_INT, bigbuf, 1000, &pos, comm);
MPI_Pack(&b, 1, MPI_INT, bigbuf, 1000, &pos, comm);
MPI_Pack(&c, 1, MPI_DOUBLE, bigbuf, 1000, &pos, comm);
MPI_Send(bigbuf, pos, MPI_PACKED, dest, tag, comm);

MPI_Recv(bigbuf, 1000, MPI_PACKED, src, tag, comm);
MPI_Unpack(bigbuf, 1000, &pos, &a, 1, MPI_INT, comm);
MPI_Unpack(bigbuf, 1000, &pos, &b, 1, MPI_INT, comm);
MPI_Unpack(bigbuf, 1000, &pos, &c, 1, MPI_DOUBLE, comm);

63CS267 2/2000 Bill Saphir

When to use MPI_PACKED

Having MPI pack the data for you is guaranteed to be slower than packing
it yourself. No pipelining possible.

Bad reasons:
• Porting a PVM code that uses pvm_pack/pvm_unpack
• Don’t want to learn about datatypes

Good reasons:
• Need to unpack data incrementally because data is self-describing
• Need to pack data incrementally because data gathering code is

separate from data sending code
• Datatypes impractical

• Used once
• Too complex

64CS267 2/2000 Bill Saphir

Other MPI features

• Timing
• Persistent communication
• Combined send/receive
• Attributes
• Topologies
• Profiling Interface
• Thread safety

• MPI-2

65CS267 2/2000 Bill Saphir

Timing

Double precision wallclock time, in seconds.

double t1, t2;
t1 = MPI_Wtime();

.... do some work ...

t2 = MPI_Wtime();
printf(“Elapsed time is %f seconds\n”, t2-t1);

Notes:
• Time starts at some arbitrary point in the past
• Note times not synchronized unless MPI_WTIME_IS_GLOBAL

66CS267 2/2000 Bill Saphir

Accurate timing is not simple -

Three standard problems

• Processes are unsynchronized to start
• Load imbalance shows up in collective and point-to-point

operations
• Extra synchronization to avoid problems 1+2 causes network

contention
0 2 31 t1

work

t3

t2

allreduce

����
����
����
����
�

����
����
����
����
�

����
����
����
����
�

����
����
����
����
����
���

��� �
����
����
����
����
���

����
����
����
����
����
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
�

����
����
����
����
����
����
����
����
����
����
����
�

����
����
����
����
����
����
����
����
����
����
����
�

67CS267 2/2000 Bill Saphir

Communicator Topologies

Many applications have logical communication topology. E.g.:

• Processes communicate only with connected processes

0 1 3

4 5 6 7

2

8 10

1312

9

1514

11

68CS267 2/2000 Bill Saphir

Communicator Topologies (II)

MPI can understand logical topology information.

Uses:
• Reorder processes to map effectively to hardware topology
• Convenience

Implementation:
• Communicators with topologies are regular intracommunicators

with extra information associated with them.
• Topologies can be implemented with attributes caching.

Recommendation/Opinion:
• Topologies do no harm
• Performance improvement rare but may become important

on clusters of SMPs

69CS267 2/2000 Bill Saphir

Topology functions

Cartesian topologies
MPI_CART_CREATE convenience
MPI_DIMS_CREATE hardware mapping
MPI_CARTDIM_GET
MPI_CART_GET
MPI_CART_RANK
MPI_CART_COORDS
MPI_CART_SHIFT
MPI_CART_SUB
MPI_CART_MAP

Graph topologies
MPI_GRAPH_CREATE
MPI_GRAPHDIMS_GET
MPI_GRAPH_GET
MPI_GRAPH_NEIGHBORS_COUNT
MPI_GRAPH_NEIGHBORS
MPI_GRAPH_MAP

70CS267 2/2000 Bill Saphir

Profiling

MPI provides a profiling interface
• Mechanism to make MPI functions available with name PMPI_ as

well as MPI_
• Program can be linked with PMPI_ and MPI_ “libraries” and

replace specific MPI_ routines with its own.
• MPI_PCONTROL function (no-op)

This allows
• User can implement specific MPI_ functions as wrappers around

the PMPI_ functions
• Wrapper functions can record information about what was called

and when.
• Wrapper functions may slightly modify functionality (e.g. replace

regular mode send with synchronous send).

71CS267 2/2000 Bill Saphir

MPI-2

Dynamic process management
• Spawn new processes
• Client/server
• Peer-to-peer

One-sided communication
• Remote Get/Put/Accumulate
• Locking and synchronization mechanisms
• NOT “shared memory”

I/O
• Allows MPI processes to write cooperatively to a single file
• Makes extensive use of MPI datatypes to express distribution of file

data among processes
• Allow optimizations such as collective buffering
• Actually implemented!

72CS267 2/2000 Bill Saphir

Freely available MPI Implementations (I)

MPICH
Developed at Argonne National Lab and Mississippi State Univ.

• http://www.mcs.anl.gov/mpi/mpich
• Runs on

• Networks of workstations (IBM, DEC, HP, IRIX, Solaris,
SunOS, Linux, Win 95/NT)

• MPPs (Paragon, CM-5, Meiko, T3D) using native M.P.
• SMPs using shared memory

• Strengths
• Free, with source
• Easy to port to new machines and get good performance (ADI)
• Easy to configure, build
• Basis for many vendor implementations

• Weaknesses
• Large
• No virtual machine abstraction NOWs

73CS267 2/2000 Bill Saphir

Freely available MPI implementations (II)

LAM (Local Area Multicomputer)
Developed at the Ohio Supercomputer Center

• http://www.mpi.nd.edu/lam
• Runs on

• SGI, IBM, DEC, HP, SUN, LINUX
• Strengths

• Free, with source
• Virtual machine model for networks of workstations
• Lots of debugging tools and features
• Has early implementation of MPI-2 dynamic process

management
• Weaknesses

• Does not run on MPPs

74CS267 2/2000 Bill Saphir

Where to get more information

Home pages
• http://www.mpi-forum.org
• http://www.mcs.anl.gov/mpi

Newsgroups
• comp.parallel.mpi

Books
• Using MPI, by Gropp, Lusk, Skjellum. The MIT Press
• MPI: The Complete Reference, by Snir, Otto, Huss-Lederman,

Walker, Dongarra. The MIT Press
• MPI: The Complete Reference, Volume 2, by Gropp, Lederman,

Lusk, Nitzberg, Saphir, Snir. The MIT Press
• Parallel Programming with MPI, by Pacheco. Morgan

Kauffman

